The effect of surface tension on trapped modes in water-wave problems

نویسندگان

  • ROBERT HARTER
  • I. DAVID ABRAHAMS
  • MICHAEL J. SIMON
چکیده

In this paper the effect of surface tension is considered on two two-dimensional waterwave problems involving pairs of immersed bodies. Both models, having fluid of infinite depth, support localized oscillations, or trapped modes, when capillary effects are excluded. The first pair of bodies is surface-piercing whereas the second pair is fully submerged. In the former case it is shown that the qualitative nature of the streamline shape is unaffected by the addition of surface tension in the free surface condition, no matter how large this parameter becomes. The main objective of this paper, however, is to study the submerged body problem. For this case it is found, by contrast, that there exists a critical value of the surface tension above which it is no longer possible to produce a completely submerged pair of bodies which support trapped modes. This critical value varies as a function of the separation of the two bodies. It can be inferred from this that surface tension does not always play a qualitatively irrelevant role in the linear water-wave problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedded trapped modes in water waves and acoustics

Trapped modes, localized oscillations in unbounded media, are referred to in different contexts by various names; acoustic resonances, Rayleigh-Bloch waves, edge waves, array guided surface waves and bound states being examples. Most studies have concentrated on such phenomena in situations where they are associated with a cut-off frequency below which wave propagation is not possible. It is mu...

متن کامل

On uniqueness in the problem of gravity-capillary water waves above submerged bodies

In this paper we consider the two-dimensional linear problem of wave–body interaction with surface tension effects being taken into account. We suggest a criterion for unique solvability of the problem based on symmetrization of boundary integral equations. The criterion allows us to develop an algorithm for detecting non-uniqueness (finding trapped modes) for given geometries of bodies; exampl...

متن کامل

THE EFFECT OF OILFIELD CHEMICALS ON THE SURFACE TENSION OF SURFACTANT SYSTEMS

Treated sea water is the most significant source of water and surfactant floods. The various chemicals employed in treatment plants should be compatible with surfactant systems. Based on surface tension experiments, the activity of these chemicals is examined over a wide range of concentrations in different solutions, including distillated water, sea water by using three types of surfactant mix...

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

BEM-FDM modeling of water free surface interaction with trapped air in OWC chamber for calculating generated power

Free surface modeling plays an important role in some ocean structures design, especially in Oscillating Water Column (OWC) devices. Boundary element method (BEM) is a suitable method for free surface modeling due to its simplicity, quick solving, and low data storage requirement. In this paper, BEM was used for free surface modeling in OWC chamber and out of it. Linear kinematic and dynamic bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007